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Abstract 
 
Managed-futures funds and CTAs trade predominantly on trends. There are several ways 
of identifying trends, either using heuristics or statistical measures often called “filters.” 
Two important statistical measures of price trends are time series momentum and moving 
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indicators are closely connected. In fact, they are equivalent representations in their most 
general forms, and they also capture many other types of filters such as the HP filter, the 
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represented through “trend signature plots” showing their dependence on past prices and 
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1. Introduction 
 
Trend-following investing is the predominant investment style for managed-futures 
hedge funds, commodity trading advisors (CTAs) and certain macro traders.1 Trend-
following investing can be defined loosely as buying when prices have been rising and 
(short-)selling when prices have been falling, based on the idea that these price trends are 
more likely to continue than not. Several studies have found trend-following investing to 
be profitable,2 but what is the best way to identify a price trend? What methods exist for 
identifying trends and how do they compare to one another? These are the questions we 
seek to address in this paper. 
 
To put our findings in a broader perspective, note that since day-to-day price changes are 
“noisy,” finding a trend that predicts the next day’s price move in any market is never 
easy. According to the so-called “random-walk” efficient-market hypothesis, future price 
moves are completely unpredictable, meaning that trend-following strategies should not 
work.3 However, price trends may exist if markets are not completely efficient or if risk 
premia change over time.  
 
Finding a price trend among noisy random price moves presents a challenge similar to 
that of “filtering” information from the noise in many other applications, such as 
astronomy, audio, ballistics, image processing, and macroeconomics. As an example, 
engineers who track ballistic missiles based on noisy radar information attempt to filter 
out noise to determine the missile’s direction. Similarly, macroeconomists and central 
bankers who receive imperfect economic data – such as estimates of the gross domestic 
product and unemployment rate collected from many sources with errors – try to assess 
whether the economy is heading into recession or is over-heating. Investors trading on 
trends in financial markets face the similar challenge of assessing the direction that prices 
are headed by filtering noisy price data. In the world of audio, Ray Dolby developed the 
Dolby system to reduce noise in music recordings and enhance the “signal” that the 
listener wants to hear.  Along the same lines, trend-followers have employed quantitative 
tools to enhance their signal of the price trend and reduce the noise around it.  
   
In finance, one simple approach to capture price trends is time series momentum 
(TSMOM) as defined by Moskowitz, Ooi, and Pedersen (2012). The simplest form of a 
time series momentum signal is the return over some recent time period, e.g., the return 
over the past 12 months. If investing in gold has resulted in a positive return over the past 
12 months, then the trend is assessed to be upward and the TSMOM investor buys gold. 
If the past return was negative, the trend is assessed to be downward, and the TSMOM 
investor short sells gold. Moskowitz, Ooi, and Pedersen (2012) show that investing based 
                                                 
1 Hurst, Ooi, and Pedersen (2012, 2013) provide a detailed analysis of managed futures strategies and show 
that the returns to the strategy can be largely explained by time series momentum. 
2 Silber (1994), Erb and Harvey (2006) and Moskowitz, Ooi, and Pedersen (2012) find strong performance 
of trend-following strategies, and Park and Irwin provide a survey (2007). Technical trading rules are 
analyzed more broadly by Lo, Mamaysky and Wang (2000) and Sullivan, Timmermann, and White (2000). 
Zakamulin (2015) makes an independent analysis of the performance of market timing with moving 
averages. 
3 Fama (1965) provides a detailed summary of the random walk hypothesis for stocks. 
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on 12-month TSMOM was on average profitable for each of the 58 liquid securities they 
analyzed over the last 25 years. Their universe included instruments across the world’s 
most liquid commodity futures, equity futures, bond futures and currency forwards.  
 
Another way to assess trends in financial markets is the moving-average crossover 
(MACROSS) method (e.g., Brock, Lakonishok, and LeBaron (1992), and Okunev and 
White (2003)). A CTA using this method will buy when one moving average of recent 
prices crosses another moving average of prices measured over a longer horizon. The 
idea is that a “fast” moving average captures the average recent prices, while a “slower” 
moving average capture where prices used to be. If recent prices are above where prices 
used to be, then the trend is assessed to be upward and the MACROSS investor buys.  
 
Both TSMOM and MACROSS methods can be refined in various ways, e.g., by relying 
on different trend horizons. We show that the most general form of MACROSS can be 
viewed as a special case of the most general TSMOM strategy. Hence, any trend signal 
that can be designed using MACROSS techniques can be similarly designed as a 
TSMOM strategy. Similarly, TSMOM is a special case of MACROSS signals.  
 
As a different way to state this result, we show how trend filters can be equivalently 
represented as functions of past prices vs. past returns. We show how to move from 
prices to returns and vice versa and illustrate these “trend signatures” graphically. We 
also show how a large class of filtering methods used in science and economics can be 
viewed as a special case of TSMOM, including the HP filter of Hodrick and Prescott 
(1997), the Kalman filter, a large set of linear filters, and regression-based methods.  
 
Lastly, we perform an empirical study that compares the performance of common 
implementations of TSMOM strategies with that of MACROSS strategies. Consistent 
with our theoretical results, we find that these strategies are closely related empirically 
and discuss the reasons for the performance differences. 
 
Our results have several implications for trend-following investors. First, both TSMOM 
and MACROSS are effective in filtering trends. Second, since these methods are 
equivalent in their most general forms, excellence in trend following does not depend on 
which of these filters is used, but, rather, how they are used. In particular, the 
performance depends more crucially on the choice of trend horizons, diversification 
across instruments, portfolio construction, risk management, optimally managing 
transaction costs, and efficient dynamic trading and order routing. Third, our method 
shows how trend-following strategies can be viewed through “trend signature plots,” 
showing their dependence on past prices and returns by horizon. 
 

2. Time Series Momentum vs. Moving-Average Crossover 
 
Time Series Momentum 
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A TSMOM strategy goes long when prices have been moving up, and short when prices 
have been moving down. The simplest TSMOM signal is the past return over some time 
period, say m months or days: 
 
 ,

m
t t m tTSMOM return −=  (1) 

  
For instance, 12-month momentum considers the return over the past 12 months. The 
return can be computed as the ratio of prices, Pt / Pt-m, or of a return index that takes 
dividends or coupons into account for cash instruments, and handles roll yields and 
implicit financing for futures. Alternatively, it can be computed as the difference of (log) 
prices Pt - Pt-m (or, again, using a return index in the place of prices). In this study, we 
focus on differences in log prices or index levels for simplicity. 
 
As an example, Figure 1 shows how gold prices have positive TSMOM at the end of 
2010 as prices had been trending upward. 
 
Figure 1. Time Series Momentum of Gold Futures. This figure shows gold 
prices over a two-year period.  The arrow shows the filtered trend from the 
smoothed past price (left horizontal bar) to the smoothed current price (right 
horizontal bar). 

 
 
There are also more refined TSMOM signals. One way to refine the TSMOM signal is to 
smooth the prices used to calculate the return: 
 

'average( :  near current time ) average( : '  near lagged time )m
t s sTSMOM P s t P s m= −     (2) 
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Smoothing can be a good idea because it reduces random noise in the data. For instance, 
focusing on a single past price may be arbitrary and subject to more noise than using an 
average of multiple past prices (which can be called “back-end smoothing”). Figure 1 
uses the average price over the 60-day period indicated by the horizontal line on the left. 
As an example, Asness, Moskowitz, and Pedersen (2013) use back-end smoothing of 
cross-sectional momentum signals. 
 
Smoothing recent prices (“front-end smoothing”) also reduces noise, but has the potential 
drawback of delaying the signal. With front-end smoothing, recent price changes are 
smoothed out and therefore only gradually affect the trading signal. This can be 
suboptimal if recent prices contain important information about the current trend or a 
trend-reversal, but can be helpful in reducing turnover. 
 
Of course, traders may want to define the TSMOM signal over a variety of horizons. In 
the extreme, one could use a series of daily (or monthly) returns and give each day’s 
return a separate weight, which we call c:  
 

 ( )1
1

c
t s t s t s

s
TSMOM c P P

∞

− + −
=

= −∑  (3) 

 
This equation means that a general TSMOM signal can be generated by considering all 
the past daily price changes and assigning importance to each day based on how long ago 
it happened. For instance, one might want to rely more on recent price changes in 
assessing the current price trend. Ooi, Moskowitz, and Pedersen (2012) conduct a 
detailed analysis of how returns at various lags predict future returns. A trend-following 
strategy is characterized by having positive coefficients cs, whereas negative coefficients 
correspond to reversal trades. 
 
 
Moving-Average Crossover 
 
The MACROSS strategy first computes two moving averages (MA) of prices, which we 
call MAfast and MAslow. The fast MA puts more weight on recent prices, whereas the slow 
MA puts more weight on past prices. As an example, we can compute an equal-weighted 
MA over the past 20 weekdays as a measure of recent prices and a 260-day average as a 
measure of where prices used to be. In Figure 2 we plot these for gold prices over the 
same period shown in Figure 1.  
 
Figure 2. Moving-Average Crossover Indicator for Gold Futures. This figure shows 
the gold price, a fast 20-day moving average (MA), and a slower 260-day MA. Given that 
the fast MA is above the slow one at the end of the sample, the filtered trend is up as 
indicated by the arrow. 
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The MACROSS strategy depends on which MA is higher: the fast one or the slow one. 
As we can see in the figure, the fast 20-day MA is above the slow 260-day MA at the end 
of the time period that we plot. This means that recent prices are above past prices, 
resulting in an upward trend.  
 
Of course, this is just one example of an MACROSS strategy. Other strategies arise by 
varying the time horizons (here the 20 and 260 day averaging periods). Further, we need 
not give each day’s price an equal weight in the moving average. Another common 
method is to weight past prices exponentially (called exponentially-weighted moving 
average as discussed in more detail later). More generally, we can compute the MA’s 
using any weighting scheme, which we will denote by w (where the weights can for 
instance be equal weights or exponential weights as described in the examples further 
below). Hence, in general we can write the MA’s mathematically as: 
 

 
1

1

1
1

fast fast
t s t s

s

slow slow
t s t s

s

MA w P

MA w P

∞

− +
=

∞

− +
=

=

=

∑

∑
 (4) 

 
The idea that one MA is faster than the other can be captured mathematically by the 
requirement that the fast MA places more weight on the most recent prices:   
 

 
1 1

      for all 
s s

fast slow
j j

j j
w w s

= =

≥∑ ∑  (5) 
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The trading signal is then the MACROSS, that is, the difference between these moving 
averages: 
 
 fast slow

t t tMACROSS MA MA= −  (6) 
 
Hence, the MACROSS signal tries to measure whether recent prices, as captured by 
MAfast, are above or below more distant prices, as captured by MAslow. Intuitively, a 
positive MACROSS means that recent prices are higher than past ones, indicating a rising 
trend.  
 
 
Moving Average Crossover as Time Series Momentum  
 
The MACROSS signal is the difference between two MA’s and therefore a combination 
of past prices: 
 

 ( ) 1
1

fast slow
t s s t s

s
MACROSS w w P

∞

− +
=

= −∑  (7) 

 
This equation shows that MACROSS signals in general can be viewed as combinations 
of past price levels. Similarly, the general TSMOM equation (3) shows that TSMOM is a 
combination of past price changes. However, we can go back and forth between price 
levels and price changes if we change the coefficients accordingly.  
 
Specifically, the MACROSS equation (6) is equivalent to the TSMOM strategy (3) with 
coefficients on past returns cs computed as follows4 
 
 𝑐𝑠 = ∑ (𝑤𝑗

𝑓𝑓𝑠𝑓 − 𝑤𝑗𝑠𝑠𝑠𝑠)𝑠
𝑗=1  (8) 

 
These implied coefficients cs are positive for all MACROSS strategies where the fast MA 
is uniformly faster than the slow MA as given by Equation (5), which is true for the 
standard MACROSS strategies. It is natural that these TSMOM coefficients are positive 
since this means that the strategy is trend following (whereas negative coefficients would 
have indicated a bet on trend reversal).  
 
 
Further, the implied return weights cs approach zero as the number of lags s increases 
(assuming that the weights ws

i  sum to 1 for each i). While the coefficients 𝑐𝑠 have no 
specific “scale,” it is natural to normalize them such that they to sum to one: 
 
                                                 
4 To see this, note that the coefficients on the price Pt-s+1 at each time must be equalized in the two different 
ways of writing the trend signal, i.e., slow

s
fast

sss wwcc −=− −1 . This can be iterated to arrive at the 

expression for c given the initial value 1 1 1
fast slowc w w= − . 
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 𝑐�̅� = 𝑐𝑠
∑ 𝑐𝑠∞
𝑗=1

 (9) 

 
This way, the TSMOM signal can be viewed as a weighted average of past returns. 
 
To understand this conversion from MACROSS to TSMOM (i.e., the conversion from 
“price space” to “return space”), consider the 20-day vs. 260 day equal weighted MA 
strategy. This strategy compares past prices based on the coefficients illustrated in Figure 
3. 
 
Figure 3. Moving-Average Crossover Coefficients: Fast and Slow Averages. The fast 
moving average (MA) is an equal-weighted average over the past 20 days, while the slow 
MA is an equal-weighted average of the past 260 days. 
 

 
 
 
When we take the MACROSS, i.e., take the fast average minus the slow average, then we 
have the weights on past prices depicted in Figure 4. 
 
Figure 4. Price Signature Plot: Moving-Average Crossover, Equal-Weighted. As 
seen in equation (7), the MACROSS signal is computed as a weighted average of past 
prices, where the weights are the fast MA(20) minus the slow MA(260). The resulting 
signal puts positive weights on the most recent 20 days and negative weights on the past 
21-260 days. 
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The MA weights slow

s
fast

s ww −  usually have this shape as a function of the time lag s. The 
weights on recent prices is positive, the weights on distant prices are negative, and the 
weights eventually go to zero. This shows that a moving average strategy can be 
interpreted as a TSMOM strategy where both the front-end price and the back-end price 
have been smoothed. Indeed, the MACROSS strategy is like a TSMOM strategy where 
the current price is computed as the average of the past 20 days prices, the “past price” is 
computed as the average of the prices from days 21 to 260, and the return is then 
computed as the difference between these two smoothed prices. 
 
We can also use equation (8) above to translate the MACROSS coefficients for price 
levels into TSMOM coefficients for price changes, i.e., returns. The coefficients in 
“return space” are seen in Figure 5, where we have normalized the weights to sum to 1 in 
both cases. 
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Figure 5. Return Signature Plot: Trend Coefficients in Return Space. This figure 
shows how much weight the trend indicator places on each daily return in the past for the 
simple 260-day time series momentum (TSMOM) and the 20/260 moving-average 
crossover (MACROSS), respectively, where the weights are normalized to sum to one. 
That is, a trend indicator can be viewed as an average of daily returns (rather than 
prices), as the figure shows.  

 

 
 
The graph shows two lines: The solid line shows the simplest TSMOM signal: It gives 
equal weight to the price change (or return) on each of the past 260 days. That is, it 
assesses the direction of the trend based on the average return. The dotted line plots the 
MACROSS coefficients derived from equation (8). It shows that even though 
MACROSS is defined as a moving average of price levels, it can be computed using 
price changes instead. The MACROSS assigns the most importance to intermediate price 
changes, and lesser weight to the most recent price changes and very old price changes. 
 
 
Time Series Momentum as Moving-Average Crossover 
 
The simple TSMOM signal can be computed as the difference between the current price 
(or log price or return index) Pt and the lagged price Pt-m (e.g., the price 12 months ago Pt-

12M ): 
 

mtt
m
t PPTSMOM −−=       (10) 

 
This shows that a TSMOM strategy can be viewed as an MACROSS where the recent 
MAfast is simply the current price Pt  (i.e., the weighting scheme puts all the weight in one 
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price, namely the most recent one : fastw1 =1, fast
sw =0 for s>1). Similarly, the distant MAslow 

is simply the lagged price (i.e., its weighted scheme puts all its weight on that price: slow
mw

=1). 
 
More refined TSMOM signals can also be viewed as MACROSS. If one uses front-end 
smoothing, then the recent MAfast becomes a (possibly weighted) average of recent prices. 
Similarly, if back-end smoothing is used, then distant MAslow becomes an average of 
lagged prices. 
 
If many momentum horizons are used simultaneously with coefficients c as discussed 
above, then the MACROSS weights w can be computed as follows: 
 

 1 1 1

1

fast slow

fast slow
j j j j

w w c
w w c c −

− =

− = −
 (11) 

 
This shows how to choose the difference between the weights of recent MAfast and the 
distant MAslow. However, there are many choices of moving averages that produce the 
same signal, since adding and subtracting the same price has no effect. In contrast, the 
momentum weights c are unique, as are the weights on past prices slow

s
fast

s ww − , so these 
are more fundamental parameters of the filtering process.5 
 
 
Example: Exponentially-Weighted Moving-Average Crossover  
 
An exponentially weighted moving average (EWMA) crossover is similar to a simple 
MACROSS, but the fast and slow moving averages are exponentially weighted instead of 
equal weighted.  Specifically, with an exponential decay of 𝜃 > 0, we have 
 

𝐸𝐸𝐸𝐸𝑓 = 1
1−𝜃

∑ 𝜃𝑗∞
𝑗=0 𝑃𝑓−𝑗    (12) 

 
Instead of parameterizing by the decay 𝜃, it is more intuitive to consider the center of 
mass (COM) of the moving average, defined as 
 

𝐶𝐶𝐸 = 1
1−𝜃

∑ 𝜃𝑗∞
𝑗=0 𝑗 = 𝜃

1−𝜃
     (13) 

 

                                                 
5 One particular choice of MA functions with positive weights that add up to one is as follows. For the fast 

MA, we can let /fast
j jw c c=  for all j, where 

1
j

j
c c

∞

=

=∑ . For the slow MA, we can let 1 0sloww = and  

1 /slow
j jw c c−=  for 2j ≥ . 



12 
 

The center of mass can be useful for forming an intuition about the effective length of the 

moving average.  For an exponentially weighted MACROSS, the price weights 𝑤𝑗 = 𝜃𝑗

1−𝜃
 

look similar to those on a simple MACROSS, but smoother, as we show in Figure 6. 
 
Figure 6. Price Signature Plot: Moving-Average Crossover with Exponential 
Weights. This figure shows how much weight an exponentially weighted moving average 
(EWMA) puts on past prices.  The fast EWMA uses a center of mass COM=32, and the 
slow EWMA uses COM=128.  The effective weights of the EWMA crossover are also 
shown. 

 

 
 
An exponentially weighted MACROSS also implies return weights c that are similar to 
the equal-weighted case, but smoother, as shown in Figure 7. 
 
Figure 7. Return Signature Plot: Moving-Average Crossover using Exponential 
Weights. This figure shows the weights that an exponentially weighted moving average 
(EWMA) crossover puts on past returns.  The centers of mass used for the EWMAs are 32 
and 128 for the fast and slow EWMAs, respectively. For comparison, a 260 day time 
series momentum (TSMOM) signal is also shown. Weights have been normalized to sum 
to one in both cases. 
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3. On the Equivalence of All Other Linear Filters 
 
The literature on signal processing includes many types of linear filters across 
applications in science and engineering. In fact, a large set of linear filters of prices can 
be viewed as TSMOM and MACROSS signals if we allow any weights c and w6. More 
specifically, linear filters corresponding to positive return weights c have a natural 
interpretation as a TSMOM signal. Hence, TSMOM and MACROSS trend indicators 
represent many classic filtering techniques.  
 
What is not immediately captured by TSMOM and MACROSS filters are non-linear 
effects such as whether the signs of the returns have been consistent for a time period or, 
conversely, whether returns have been accelerating recently. However, variations of 
TSMOM can account for such effects as well.  For example, we have thus far limited 
ourselves to strictly positive weights c.  If we loosen this restriction to include sets of 
weights whose sum is positive, but which include some negative weights, we can create 
trend measures that implicitly include differences in returns.  These metrics can be 
interpreted as including acceleration / deceleration measures.  For example, if we put 
positive weight on more recent returns, but negative weights on more distant returns, we 
are measuring whether returns have been stronger recently than in the past – in other 
words, we are measuring acceleration. 
 
                                                 
6 Specifically, any filter 𝑓(∙) on data series P that is a causal (i.e., only depends on the past), linear (i.e., 
f(aX+Y)=af(X)+f(Y)), and time-invariant (i.e., function does not depend on time) can be represented as a 
sum of weighted past values of P. 
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The Hodrick Prescott Filter 
 
TSMOM and MACROSS techniques also capture as a special case the so-called Hodrick 
and Prescott (HP) filter. Hodrick and Prescott (1997) report that the method is also called 
the Whittaker-Henderson Type A method (Whittaker (1923)) and has been used in 
actuarial sciences to smooth mortality rates; in astronomy (e.g., by Schiaparelli in 1867); 
and in ballistics (e.g., by von Neuman in the 1940s). The method is widely applied in 
macroeconomics, where it is used to filter out the business-cycle trends from noisy data 
on GDP growth.  
 
The HP filter is based on an idea that prices (or GDP) have a growth component g and a 
cyclical component z, i.e., Pt = gt + zt. The trend is the change of the smooth growth 
component, trendt = gt – gt-1. The growth component is filtered from the price data by 
finding a growth path that implies small trend variations, trendt – trendt-1, (stable trend) 
and small noise terms, zt, (good fit): 
 

( ) ( )
1

2 2
,..., 1min

Tg g t t t
t t

z trend trendλ −+ −∑ ∑    (14) 

 
using a parameter λ that determines how stable the filtered trend is.  
  
We show in Appendix A that the growth component gt  is a moving average of past 
prices. Hence, the trendt = gt – gt-1 is a difference between two moving averages (the MA 
at time t and the MA at time t-1), and, therefore, it is an MACROSS signal.  
 
Figure 8. Price Signature Plot: Hodrick and Prescott Filter. This figure shows the 
weights on prices for the two growth components, gt and gt-1, as well as for trendt, their 
difference, for λ=104.  Note that while gt-1 does depend on Pt, the final trend does not 
depend on any future information. 
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Further, since MACROSS’s are TSMOM signals, the HP filter is also a TSMOM signal. 
That is, the HP trend can be written as a weighted average of past price changes.  
 
Figure 9. Return Signature Plot: Hodrick and Prescott Filter. This figure shows the 
weights on past returns for trendt, for λ=104. 
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What is special about the HP filter is that it implies a particular shape for the MA weights 
and for the momentum return weights. The shape of the weights is similar to an 
exponentially weighted MA.  However, the weights on returns are not strictly positive – 
there is a small amount of negative weight in the filter.  Thus, the filter can be thought of 
as a combination of simple TSMOM plus a small amount of acceleration. 
 
 
The Kalman Filter 
 
The Kalman Filter (Kalman (1960)) is a technique which can be used to optimally 
estimate hidden variables of dynamic linear systems with noisy observations.  A full 
treatment of the Kalman Filtering technique is beyond our scope here.  But in the context 
of trend detection, the Kalman Filter can be applied to estimate the underlying (and 
hidden) trend variable driving returns.   
 
The particular application of the Kalman Filter will depend on the model used for the 
underlying data.  If we know more about the underlying dynamics of the system, we can 
put more structure around the model, which may help in estimating the parameters of a 
Kalman Filter.  But for price data, even simple random walk models tend to capture most 
of the important dynamics of price series.  So it is not clear that it would be productive to 
add more structure to the underlying data generating process.  If we are striving for 
simplicity, the special case of the “local trend” model may be a good choice.  The local 
trend model treats prices as a random walk with a trend, where the trend itself a random 
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walk whose value is not directly observable.7  The Kalman Filter can then be used to 
estimate this underlying trend. 
 
Harvey (1984) shows that in applying the Kalman Filter to a local trend model, the 
resulting optimal trend estimate is simply an exponentially weighted moving average of 
past returns.  In other words, absent more model structure than the linear trend model, 
using the Kalman Filter to estimate a trend results in strictly positive weights on past 
returns, i.e. a TSMOM type signal.  The center-of-mass parameter of the exponentially 
weighted moving average is determined by the parameters of the underlying model 
(which may themselves be estimated from the data). 
 
Unlike the EWMA crossover discussed earlier, which consists of two exponentially 
weighted moving averages on past prices (one fast and one slow), the Kalman Filter 
results in an exponentially weighted moving average on returns.  This is different than 
the simple TSMOM or EWMA crossovers, as shown in Figure 10: 
 
Figure 10. Return Signature Plot: Kalman Filter. This figure shows the weights on 
past price changes, or returns, for a Kalman Filter applied to a local linear trend model.  
In this case, a center of mass of 96 is used to form the exponential weights.  Also shown 
are weights for an exponentially weighted moving average (EWMA) crossover with 
centers of mass of 32 and 128 for the fast and slow EWMAs, respectively, as well as 
weights for a simple 260 day time series momentum (TSMOM) signal. 
 

 
 
 
 
 
                                                 
7 Slightly more formally, 𝑟𝑟𝑟𝑟𝑟𝑟𝑓 = 𝑟𝑟𝑟𝑟𝑡𝑓 + 𝜀𝑓, and 𝑟𝑟𝑟𝑟𝑡𝑓 = 𝑟𝑟𝑟𝑟𝑡𝑓−1 + 𝜂𝑓, where ηt and εt are both 
iid, normally distributed with mean 0 and constant variance, and independent of one another. 
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Trend Estimation Using Ordinary Least Squares Trend Regression 
 
Another intuitive trend-measurement method which turns out to be equivalent to a 
generalized TSMOM signal is a regression-based trend estimate on prices.  In order to 
estimate the trend in a price series over a certain period of time, we can estimate an 
ordinary least-squares (OLS) best-fit straight line through the price series.  For example, 
Figure 11 shows how this works for a one-year trend estimate in gold prices. 
 
Figure 11. OLS One-Year Trend Estimate of Gold Prices. This figure shows the price 
of gold in USD / t. oz., and an OLS trendline estimated using the last year of data shown.   
 

 
 
This trend estimation methodology turns out to be equivalent to a generalized TSMOM 
signal.  In other words, it can be expressed as a linear combination of weighted past 
prices, and therefore, as a weighted combination of past price changes. 
 
This set of weights in Figure 12 below is parallel to an MACROSS – recent prices get 
positive weight, and more distant past prices get negative weight.  For the sake of 
comparison, the simple MACROSS weights are shown as well. This can also be 
translated into weights on returns using equation (8) as seen in Figure 13. 
 
Figure 12. Price Signature Plot: OLS Trend. This figure shows the weights on prices 
for the OLS trend estimator which estimates a best fit trend-line through the past 260 
days of prices, compared to the simple 20/260 moving average crossover (MACROSS) 
signal. 
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Figure 13. Return Signature Plot: OLS Trend. This figure shows the weights on past 
price changes, or returns, for the OLS trend estimator, compared to the simple 20/260 
MACROSS signal and the simple 260-day TSMOM signal. Each of the three sets of 
weights is normalized to sum to one. 
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We see that the OLS regression method gives the most weight to returns at the center of 
the window, while returns that are at the extremes of the window (either most recent or 
most distant) are down-weighted by this scheme. 
 
There are many other operations which ultimately are versions of weighting past returns, 
similar to TSMOM.  For example, using the multi-resolution approach, wavelets can be 
used to extract trends at various resolutions from a price series.8 
 

4. Empirical Analysis 
 
We have shown theoretically how the most general forms of TSMOM and MACROSS 
are equivalent and capture all other linear filters. Given that TSMOM and MACROSS 
capture all of the other filters and feature prominently in applications, we focus our 
empirical study on these trend indicators.  
 
Despite this equivalence between the most general classes of TSMOM and MACROSS, 
there is room for differences to emerge between the common implementations of those 
signals as well as from non-linear transformations done as part of portfolio construction. 
Therefore, it is interesting to empirically study how simple TSMOM strategies compare 
to simple MACROSS strategies.   
 
 
Data  
 
We use prices from 24 commodity futures, 13 developed government bond futures, 12 
currency pairs from 9 underlying currencies, and 9 developed equity indices.  These 58 
instruments were chosen for their liquidity by Moskowitz, Ooi, and Pedersen (2012), and 
we extend their dataset so that our data covers prices from January 1985 through April 
2015. Signals are calculated from a return index (rather than from prices directly) that is 
formed by rolling futures and forward prices, and which therefore implicitly incorporates 
financing cost and “carry” or “rolldown.”  The index reflects the actual returns from 
holding a rolled futures or forward position in an instrument with no cash outlay.  Since 
futures and forwards have implicit financing, these return indices are naturally excess of 
cash.  The list of instruments and their sources are detailed in Appendix C. 
 
 
Methodology 
 
We seek to construct three standard TSMOM strategies and three standard MACROSS 
strategies that are relatively comparable. For the TSMOM strategies, we consider 1-
                                                 
8 For a full treatment of using wavelet filtering in financial time series, see Gencay, Selcuk, and Whitcher 
(2001) 
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month, 3-month, and 12-month trends, following the methodology of Hurst, Ooi, and 
Pedersen (2013).  Specifically, the TSMOM signals are parameterized by the number of 
look-back days such that TSMOM(n) is calculated as the log return index today minus the 
log return index n days ago.  
 

𝑠𝑠𝑠𝑟𝑠𝑠𝑓
𝑇𝑇𝑇𝑇𝑇(𝑛) = 𝑃𝑓 − 𝑃𝑓−𝑛    (15) 

 
We consider values of n equal to 22 trading days (approximately 1 month), 66 trading 
days (3 months), and 260 trading days (12 months).  Every day, we form a new portfolio 
that is held for one day. The results are similar for one-month holding periods, except that 
the Sharpe ratios are naturally lower. We use daily rebalancing to focus on the 
connections between the different trend strategies with minimal noise due to infrequent 
rebalancing. 
 
Likewise, we consider three MACROSS strategies at similar horizons. We use 
exponentially-weighted MACROSS signals since these are perhaps the most common in 
investment practice. The MACROSS signals are parameterized by the center of mass of 
the fast and slow moving averages, such that an MACROSS(m,M) signal has an m-day 
center of mass for its fast moving average and an M-day center of mass for its slow 
moving average:  
 

𝑠𝑠𝑠𝑟𝑠𝑠𝑓
𝑇𝑀𝑀𝑀𝑇𝑇𝑇(𝑚,𝑇) = ∑ 𝑤𝑠𝑚𝑠=1 𝑃𝑓−𝑠+1 − ∑ 𝑤𝑠𝑇𝑠=1 𝑃𝑓−𝑠+1  (16) 

 
where the weights are 𝑤𝑠𝑚 = 𝜃𝑠

1−𝜃
 with 𝜃 = 𝑚

1+𝑚
 as in equations (12)-(13).  We choose m 

and M such that the MACROSS strategies correspond to the TSMOM signals by ensuring 
that they have similar trend horizons.  Specifically, we let M take the values 12, 32, 128 
and set m to one quarter of these values. These values are chosen such that M is close to 
n/2 (and divisible by four) for the corresponding TSMOM(n) signals. These choices of M 
are natural since a TSMOM(n) signal has a center of mass equal to n/2 because it gives 
equal weight to the past n returns.  
 
To put the trading signals on an equal footing, we use the same portfolio construction 
methodology for TSMOM and MACROSS signals, following Moskowitz, Ooi, and 
Pedersen (2012). Specifically, for each strategy, our position in an asset i at time t is 
calculated as follows: 
 

 𝑝𝑝𝑠𝑠𝑟𝑠𝑝𝑟𝑓𝑖 = 0.65% ∗ 𝑠𝑖𝑠𝑛�𝑠𝑖𝑠𝑛𝑓𝑠𝑡
𝑖�

𝜎𝑡
𝑖    (17) 

 
where 𝑠𝑠𝑠𝑟𝑠𝑠𝑓𝑖  is the relevant TSMOM or MACROSS signal and σt

i is the volatility of 
asset i at time t, estimated using an exponentially weighted volatility with a center of 
mass of 60 days, again following Moskowitz, Ooi, and Pedersen (2012).  We multiply by 
0.65% in order to target an annualized volatility of 0.65% in each asset.  When 
aggregated, this level of asset target volatility results in an annualized portfolio volatility 
of approximately 10% for each of the six strategies. We take the sign of the signal for 



22 
 

simplicity, though there are many other possible transformations of the signal that could 
be used in practice. 
 
Empirical Results 
 
The performance of each of these six strategies is reported in Table 1. We see that 
TSMOM and MACROSS strategies perform similarly across horizons, both delivering 
impressive risk-adjusted returns with Sharpe ratios above 1 before transaction costs. 
 
 
Table 1. Performance of Simple TSMOM and MACROSS Strategies. This table 
shows the performance statistics of the six signal portfolios.  Excess returns and volatility 
are annualized, and the Sharpe ratio is the ratio of the two. 
 

Signal Name 
Annual Returns 
(Excess of Cash) 

Annualized 
Volatility Sharpe Ratio 

MACROSS(3,12) 10.3% 10.2% 1.01 
MACROSS(8,32) 10.9% 10.3% 1.06 

MACROSS(32,128) 12.8% 9.7% 1.33 
TSMOM(22) 9.8% 10.1% 0.97 
TSMOM(66) 12.1% 10.1% 1.20 
TSMOM(260) 14.2% 9.8% 1.45 

 
We next turn to the central empirical question, namely a comparative study of these two 
different approaches to trend-following investing. For this study, we regress the return 
𝑟𝑓
𝑇𝑀𝑀𝑀𝑇𝑇𝑇(𝑚,𝑇) of each MACROSS factor on all the three TSMOM factors: 

 
  𝑟𝑓

MACROSS(𝑚,𝑇) = 𝛼 + 𝛽1 𝑟𝑓
TSMOM(22) + 𝛽2𝑟𝑓

TSMOM(66) + 𝛽3𝑟𝑓
TSMOM(260)      (18) 

 
We also run the regression with each of the TSMOM factors on the left-hand side, 
regressing on the three MACROSS factors. In other words, we perform six different OLS 
regressions, regressing each TSMOM (MACROSS) factor portfolio returns on the three 
MACROSS (TSMOM) factor portfolio returns.  The results are summarized in Table 2.   
 
 
Table 2. Regressions of TSMOM on MACROSS and Vice Versa. Panel A shows the 
regression results from regressing each MACROSS factor portfolio’s daily returns on the 
three TSMOM factor portfolio returns.  T-statistics are shown in parenthesis.  The 
intercept is multiplied by 260 to annualize the daily returns.  Panel B shows the 
regression results from regressing each TSMOM factor portfolio return series on the 
three MACROSS factor portfolio returns.  
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For each of the six regressions, the R squared is above 80%.  Such a high R-squared 
shows that these trend signals are closely related to each other and yield strategies that 
are quite correlated.   
 
In addition, for each of the three MACROSS strategies, we see no significant alpha over 
the TSMOM signals.  In other words, for each of the three MACROSS signals considered 
here, we do not see any significant performance benefit over a combination of TSMOM 
signals.  This is intuitive given our theoretical results above.  Somewhat surprisingly, in 
the case of MACROSS(8,32), we see a significant negative alpha, meaning that this 
MACROSS factor would detract if added to the best-fit TSMOM portfolio. Also 
surprisingly, we do see positive significance in the alphas of some of the TSMOM signals 
when they are regressed on the MACROSS signals.   
 
The fact that we see these significant alphas does not necessarily mean TSMOM 
specifications are superior to MACROSS specifications or vice versa.  It may simply 
mean that MACROSS signals have a harder time mimicking a TSMOM signal, while 
TSMOM signals, because of their shape, are more easily able to fit an arbitrary 
MACROSS signal.  This can be seen to some extent in the R squares, which are higher 
when TSMOM signals are the independent variables (although the difference is only a 
few percentage points). Figure 14 illustrates this point graphically. Panel A shows how 
the TSMOM signals are able to well approximate the MACROSS(8,32) signal by 
combining the three TSMOM signals with relevant weights.  In contrast, Panel B shows 
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that the MACROSS signals are not able to approximate the TSMOM weight as 
effectively.9  
 
Further, the alphas that we discover in Table 2 may reflect the relative performance of the 
trend horizons that are over- or under-weighted by the best fit as seen in Figure 14. For 
instance, as seen in the figure, the MACROSS(8,32) signal gives more weight past 
returns 60-120 days ago, while the best-fit TSMOM portfolio gives more weight to 
returns 40-60 days ago, and the latter may predict returns more strongly, leading to a 
negative alpha.  This doesn’t necessarily mean that TSMOM is a better way to invest in 
trend following, as these issues can perhaps be addressed by changing the parameters of 
the MACROSS signals and including a wider array of MACROSS signals. 
 
 
Figure 14. Approximating Moving-Average weights with Time Series Momentum 
and Vice Versa. Panel A shows the weight of the moving average MACROSS(8,32) 
signal on past returns, and the combined weights from the three time series momentum 
(TSMOM) signals, weighted in proportion to the betas in the regression of 
MACROSS(8,32) on TSMOM in Table 2. Panel B shows the weight of the TSMOM(66) 
signal on past returns, and the combined weights from the three moving-average 
crossover (MACROSS) signals, weighted in proportion to the betas in the regression of 
TSMOM(66) on MACROSS in Table 2. 
 

                                                 
9 Each plot shows a signal’s effective weight on past asset returns.  It also shows the weighted average of 
the weighting schemes corresponding to the four explanatory variables, weighted in proportion to the betas 
in the regression.  This is meant to be stylized – it does not perfectly represent the regression since the 
regression analysis is performed on strategy returns, not the underlying signals.  The relation between 
signal construction and return correlations is far from perfect due to the non-linear portfolio construction, 
but the stylized results are informative nonetheless.   
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5. Conclusion 
 
The academic literature and real-world investors have put forth a host of strategies that on 
the surface appear unique, but which are all related to trend-following at a high level. We 
seek to unify many of these seemingly disparate strategies in a simple, robust, and 
intuitive framework. We show that trends can be filtered out from prices or returns using 
a variety of methods, including time series momentum, moving-average crossovers, and 
other popular filters. In doing this, we prove that generalized forms of many trend-based 
investment strategies are equivalent, and provide intuition for how different approaches 
to trend-following vary from strategy to strategy. Further, we show how each trend signal 
can be characterized by its “trend signature plots” that illustrate the trend indicator’s 
dependence on past prices and returns. 
 
Our results thus further demystify trend-following investing and put these strategies in a 
useful perspective for investors. Because each of these signals can be expressed in a 
unified framework, it becomes clear that the filtering methodology may matter less than 
the horizons chosen, portfolio construction, risk management, and other signals which 
may be useful in identifying the quality of a trend.  Our results suggest that investors and 
managers focus on the robustness and quality of implementation – including optimally 
managing transaction costs,10 dynamic trading, diversification, position sizing, portfolio 
construction, and risk management – rather than looking exclusively at which specific 
filter to start from.  
 

                                                 
10 See Garleanu and Pedersen (2013) 
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Appendix A: The HP Filter as TSMOM or MACROSS 
 
To find the HP filter, we need to minimize the objective function: 
 

( ) ( )( )22
1 1 2

1 3
min

T T

g t t t t t t
t t

P g g g g gλ − − −
= =

− + − − −∑ ∑  

 
The objective function can be written in vector form as: 
 

( ) ( )min ' ' 'g P g P g g K Kgλ− − + ⋅  
 
where the matrix K is of dimension (T-2)-by-T, defined as: 
 

1 2 1 0
1 2 1

0 1 2 1

K

− 
 − =
 
 

− 

  

 

 
To solve this filtering problem, one differentiates the objective function and considers the 
first order condition: 
 

( )0 'P g K Kgλ= − − + ⋅  
 
Hence, the solution for the growth component is:  
 

( ) 1'g I K K Pλ −= +  
 
This shows that the growth component is a linear combination of past prices. Indeed, the 
last row of the matrix ( ) 1'I K Kλ −+  contains the weights on past prices that give rise to 
the most recent growth component, gT. Similarly, the second to last row gives the weights 
for the second most recent growth component, gT-1. Lastly, the difference between these 
is the current trend, trendT = gT - gT-1, which therefore is an MACROSS signal, or, 
equivalently, a TSMOM signal.  
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Appendix B: The OLS Best Fit Trend as TSMOM or MACROSS 
 
The OLS trend regression estimates the parameters of the following model: 
 

𝑃𝑓 = 𝛼 + 𝛽𝑟 + 𝜀𝑓 
 
over some time window that is N periods long. The relevant trend parameter is the 
estimated slope parameter �̂�.  A positive (negative) value of �̂� indicates a positive 
(negative) time trend. 
 
The OLS estimate of �̂� as a function of the prices P, time t, and window length N is: 
 

�̂�𝑓 =
∑ �𝑃𝑓−𝑠+1 − 𝑃�𝑓,𝑁 ��𝑁+12 − 𝑠�𝑁
𝑠=1

∑ �𝑁+12 − 𝑚�𝑁
𝑚=1

2  

 
where �𝑁+12 − 𝑠� is the de-meaned time index series, and 𝑃�𝑓,𝑁 is the average price over the 
window:  
 

𝑃�𝑓,𝑁 =
1
𝑁
� 𝑃𝑓−𝑚+1

𝑁

𝑚=1

 

 
The expression for the estimated slope can be rearranged as follows: 
 

�̂�𝑓 = �𝑃𝑓−𝑠+1
�𝑁+12 − 𝑠�

∑ �𝑁+12 − 𝑚�
2𝑁

𝑚=1

𝑁

𝑠=1

=:�𝑤𝑠𝑃𝑓−𝑠+1

𝑁

𝑠=1

 

 
which is clearly a weighted sum of past prices. We can then use equation (8) to express 
these as weights c of past price changes (i.e., asset returns). 
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Appendix C: Data Sources 
 
Commodity Futures 
 
Item Source 
Aluminum 

LME (London Metal Exchange) Copper 
Nickel 
Zinc 
Brent Oil 

ICE (Intercontinental Exchange) 

Gas Oil 
Coffee 
Cocoa 
Cotton 
Sugar 
Corn 

CBOT (Chicago Board of Trade) 
Soybeans 
Soybean Oil 
Soybean Meal 
Wheat 
Lean Hogs CME (Chicago Mercantile Exchange) Live Cattle 
WTI Crude Oil 

NYMEX (New York Mercantile Exchange) 
RBOB Gasoline 
(spliced with Unleaded) 
Heating Oil 
Natural Gas 
Gold COMEX (Commodities Exchange) Silver 
Platinum TOCOM (Tokyo Commodity Exchange) 
 
Bonds 
 
Item Source 
Australia 3-year Bond 

Datastream is used for futures returns, 
and JP Morgan bond index returns are 
used before futures returns are 
available. 

Australia 10-year Bond 
Euro Schatz 
Euro Bobl 
Euro Bund 
Euro Buxl 
Canada 10-year Bond 
Japan 10-year Bond 
Long Gilt 
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US 2-year Note 
US 5-year Note 
US 10-year Note 
US Long Bond 
 
Currencies 
 
Item Source 
Australia 

Spot exchange rates and forward 
interest rates from Citigroup are used 
to form return series after 1989.  Prior 
to 1989, spot exchange rates from 
Datastream are combined with the 
Interbank Offered Rates (IBOR) from 
Bloomberg. 

UK 
Germany 
(spliced with euro) 
Japan 
US 
Norway 
Sweden 
Switzerland 
Canada As above, with 1992 as the switchover 

point. 
New Zealand As above, with 1996 as the switchover 

point. 
 
Equity Indices 
 
Item Source 
Australia (SPI 200) 

Datastream is used for futures returns, 
and MSCI country index returns are 
used before futures returns are 
available. 

France (CAC 40) 
Germany (DAX) 
Italy (FTSE/MIB) 
Japan (Topix) 
Netherlands (AEX) 
Spain (IBEX 35) 
UK (FTSE 100) 
US (S&P 500) 
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